Biomedical Engineering

Biomedical engineers use science, engineering, and mathematics to understand and solve medical problems. We focus on improving people’s quality of life. Biomedical engineers who specialize in biomechanics design and analyze biological systems or medical devices that have to do with forces, stresses, and strains. This includes studying the motions of bodies or joints, fluid flow, the deformation of tissues or materials, and the transport of molecules and chemicals through tissues and across membranes.

Biomedical engineers who specialize in bioinstrumentation use electronics and signal analysis to take measurements from and deliver stimuli to living cells and tissues. Examples include cochlear implants, pacemakers, and patient monitoring equipment. Biomedical engineers who specialize in biomaterials design and study materials to replace, repair, and interact with cells and tissues in the body. Examples include metal, ceramic, polymer, or tissue-engineered implants; these implants can be permanent or biodegradable. The United States Bureau of Labor Statistics has projected that jobs for biomedical engineers will increase by 23% between the years 2014 and 2024.

The biomedical engineering program at Rose-Hulman produces engineers with the medical and biological expertise needed to solve health care problems during careers in technical and health-related industries, as well as in government or industrial laboratories. Alumni wishing to continue their studies in graduate/professional school or health professions programs will be well-qualified to do so.

Biomedical Engineering Program Educational Objectives

Objectives are defined as "expected accomplishments of graduates during
the first several years following graduation from the program."

  • Graduates will apply the theories and concepts of biology, mathematics,
    physical science and engineering science essential to being a successful
    biomedical engineer.
  • Graduates will apply practical and technical skills required for biomedical
    engineering practice.
  • Graduates will work and communicate effectively with all of the people around
    them.
  • Graduates will exercise their professional responsibilities towards society.
  • Graduates will apply design principles to open-ended problems subject to technical, practical and societal constraints.

Biomedical Engineering Student Outcomes

By the time students graduate with an undergraduate Biomedical Engineering degree from Rose-Hulman, they will have:

  1. An ability to apply knowledge of mathematics, science, and engineering.
  2. An ability to design and conduct experiments, as well as to analyze and interpret data.
  3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
  4. An ability to function on multidisciplinary teams.
  5. An ability to identify, formulate, and solve engineering problems.
  6. An understanding of professional and ethical responsibility.
  7. An ability to communicate effectively.
  8. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
  9. A recognition of the need for, and an ability to engage in life-long learning.
  10. A knowledge of contemporary issues.
  11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The biomedical engineering program is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Biomedical Engineering Areas of Concentration

To receive the B.S. Degree Program in Biomedical Engineering, each student must satisfy the requirements of one of three Biomedical Engineering Areas of Concentration: Biomaterials, Biomechanics or Biomedical Instrumentation. The course options for each of these Areas are given below. A total of 16 credits (including required courses) from one of the lists must be taken.

It is not permissible to "mix and match" courses from different area lists without written permission from the BBE department head.

Biomedical courses that are offered as special topics courses (e.g. BE491 or BE597) may be used with the written permission of the department head. Students should work out their schedule in advance to ensure that all graduation requirements are met.

BIOMATERIALS CONCENTRATION

Course   Title
BE 516   Introduction to MEMS
BE 539   Multiscale Biomechanics
BE 560   Tissue-Biomaterial Interactions
BE 570   Introduction to Tissue Engineering
CHE 315*   Materials Science and Engineering
CHE 441   Polymer Engineering
ME 317   Design for Manufacturing
ME 328*   Materials Engineering

*CHE 315 OR ME 328 may be used, but not both

BIOMEDICAL INSTRUMENTATION CONCENTRATION

Course   Title
BE 340   Biomedical Instrumentation and Signal Processing
BE 350   Biocontrols
BE 435/535   Biomedical Optics
BE 516   Introduction to MEMS
BE 520   Introduction to Brain-Machine Interfaces
BE 541   Medical Imaging
BE 543   Neuroprosthetics
BE 555   Electrophysiology
ECE 230   Introduction to Embedded Systems
ECE 480   Introduction to Image Processing
ME 430   Mechatronic Systems

BIOMECHANICS CONCENTRATION

Course   Title
ME 317   Design for Manufacturing
BE 525   Biomedical Fluid Mechanics
BE 531   Biomechanics II
BE 534   Soft Tissue Mechanics
BE 539   Multiscale Biomechanics
BE 545   Orthopaedic Biomechanics
BE 550   Research Methods in Biomechanics
EM 403   Advanced Mechanics of Materials
ME 422   Finite Elements for Engineering Applications
ME 520   Computer-Aided Design and Manufacturing
ME 522   Advanced Finite Element Analysis

Biomedical Engineering Thesis Option:

The biomedical engineering thesis option is intended for students who complete a substantive research project in this field. In order to complete this thesis option a student must:

  1. Pass a minimum of 8 credit hours of BE 492.
  2. Perform research in BE492 that involves the same research project and is completed under the direction of a departmental faculty mentor. None of these credits may be used to fulfill the biomedical engineering area elective requirement.
  3. Complete the course, BE 499 Thesis Research, in which the thesis is written and submitted to the department, and an oral research presentation is given to a minimum of three departmental faculty members, including the student’s advisor. Successful completion of the biomedical engineering thesis will be noted on the student’s transcript.

Biomedical Engineering Minor

The biomedical engineering minor is intended to provide a biomedical engineering background to undergraduate students who are interested in pursuing careers in the biomedical industry and healthcare related fields.

In order to complete the requirements of the biomedical engineering minor, a student must complete either BIO 110-Cell Structure & Function or BIO 120-Comparative Anatomy & Physiology AND complete four courses from the list shown below. Other BE courses may be substituted with approval by the BBE Department Head. At least three of the courses must have a BE prefix.

 

BIO411

Genetic Engineering

BE310

Analysis of Physiological Systems I

BE320

Analysis of Physiological Systems II

BE331 and BE352

Biomechanics and Biomechanics Lab

BE340 *

Biomedical Signal Processing *

BE350 **

Biocontrol Systems **

BE361 and BE353

Biomaterials and Biomaterials Lab

BE435/535

Biomedical Optics

BE/MA482

Bioengineering Statistics

BE520

Introduction to Brain Machine Interfaces

BE525

Biomedical Fluid Mechanics

BE531

Biomechanics II

BE534

Soft Tissue Mechanics

BE539

Multiscale Biomechanics

BE543

Neuroprosthetics

BE545

Orthopaedic Biomechanics

BE560 

Tissue-Biomaterial Interactions

BE570

Introduction to Tissue Engineering

  * BE340 cannot be used for a BE minor by students majoring in electrical or computer engineering.
** BE350 cannot be used for a BE minor by students who have taken ECE320 or ME406.

In addition to courses in the above area concentration, students are required to have completed at least 12 credits of basic engineering courses. These courses may be chosen from the list below:

BE201

Biomedical Instrumentation and Measurements

EM121

Statics & Mechanics of Materials I

EM204

Statics & Mechanics of Materials II

EM301 

Fluid Mechanics

ECE180

Introduction to Signal Processing

ECE203 *

DC Circuits

ECE204

ES201

AC Circuits

Conservation & Accounting Principles

ES202

Fluid Systems

ES203 *

Electrical Systems

ES204

Mechanical Systems

CHE201

Conservation Principles and Balances

CHE202

Basic Chemical Process Calculations

CHE301 

Fluid Mechanics 

* Students may use either ECE203 or ES203 for a BE minor, but not both of these courses.

Successful completion of an area minor is indicated on the student’s transcript. A student interested in pursuing an area minor in biomedical engineering should consult with the head of the Department of Biology and Biomedical Engineering.

Plan of Study

Freshman Open Close
Sophomore Open Close
Junior Open Close
Senior Open Close
Launch Root Quad